Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы


Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
Внутренняя часть токамака DIII-D. Изображение: General Atomics

Хорошие новости продолжают поступать в области исследований ядерного синтеза.
Несколько дней назад исследователям удалось поддерживать плазму при температуре 100 миллионов градусов Цельсия в течение более 40 секунд. Недавно другой группе исследователей удалось сделать плазму более плотной, чем когда-либо, без каких-либо потерь.

Чтобы ядерный синтез стал жизнеспособным источником энергии, необходимы десятилетия исследований. Ядерный синтез — естественная реакция в звездах, но его крайне сложно воспроизвести на Земле. Исследователи все еще сталкиваются с рядом технических проблем, чтобы собрать воедино условия, необходимые для контролируемого и экономически эффективного ядерного синтеза. Плотность плазмы — одно из важнейших условий для воспроизведения реакции.

Чем плотнее материал, тем большее количество горючих частиц он содержит, что повышает вероятность термоядерного синтеза. В ядерных реакторах типа токамак эта плотность ограничена. Однако в ходе недавнего эксперимента ученым из General Atomics (компании, специализирующейся на ядерной физике) удалось увеличить плотность плазмы, как никогда ранее, без ущерба для ее удержания. Подробности были опубликованы в журнале Nature.

Преодоление предела Гринвальда

Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как «предел Гринвальда». При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей. Другими словами, превышение этой плотности чревато разрушением стенок реактора.

Однако в своем эксперименте исследователи General Atomics благополучно превысили предел Гринвольда, используя реактор-токамак DIII-D. Плотность на 20% превышала предел в течение 2,2 секунды, и все это время сохранялась стабильность плазмы. Команда вводила дейтерий, чтобы замедлить термоядерную реакцию и контролировать ее поведение. Несмотря на то, что это время было коротким, оно уже показывает, что более плотная плазма может быть управляемой в токамаке.

Исследователи использовали метрику под названием H98 (y, 2) для оценки эффективности, с которой реактор токамака удерживает плазму. Как объясняют ученые, если значение H98 (y, 2) больше 1, это означает, что плазма остается стабильной и хорошо удерживается, что и было сделано в эксперименте.

Повторение эксперимента на более крупном реакторе

После такого успеха ученые хотят экстраполировать результаты на более крупные установки. В частности, они думают об ИТЭР, экспериментальном токамаке нового поколения, который сейчас строится во Франции. Однако исследователи подчеркивают, что воспроизвести тот же эксперимент на реакторе такого размера может быть очень сложно.

По их словам, небольшое изменение начальных условий может привести к кардинально иным результатам. Не говоря уже о том, что переход к ИТЭР означает адаптацию метода к плазменной камере с внешним радиусом 6,2 метра, в то время как для DIII-D этот показатель составляет 1,6 метра. Это отражает фундаментальные проблемы ядерного синтеза и сложность, с которой придется столкнуться ученым, прежде чем будет создан коммерчески жизнеспособный реактор.


Источник