Вдумайтесь: буквально на наших глазах понятия «нейронные сети» и «искусственный интеллект» перестали быть чем-то, что ассоциируется с научной фантастикой, — теперь это наша обыденность. Вместе с телеграм-каналом «Цифровой Журнал» разобрались, что сейчас в центре внимания в мире технологий. Naked Science: Многие часто путаются и не могут понять, что есть нейросеть, а что относится к термину…
Вдумайтесь: буквально на наших глазах понятия «нейронные сети» и «искусственный интеллект» перестали быть чем-то, что ассоциируется с научной фантастикой, — теперь это наша обыденность. Вместе с телеграм-каналом «Цифровой Журнал» разобрались, что сейчас в центре внимания в мире технологий.
Naked Science: Многие часто путаются и не могут понять, что есть нейросеть, а что относится к термину «искусственный интеллект». Расскажите, как их различать?
«Цифровой Журнал»: На самом деле, все довольно просто. Искусственный интеллект — обширное понятие, описывающее систему, способную выполнить ту или иную задачу, которую ранее невозможно было решить без вмешательства человеческого разума. А нейронная сеть — это уже конкретная реализация ИИ, заточенная под определенные задачи, связанные с обработкой сложных данных.
NS: Окей, тогда остановимся на нейросетях. Как они эволюционировали и пришли к текущему состоянию?
ЦЖ: История их развития тянется аж с 1940-х годов, тогда сформировали основные принципы и процессы обучения. Затем в 1980-х был открыт новый подход к обучению нейронок — метод распространения ошибки. Этот алгоритм минимизировал неточности в ходе обучения нейросетей. В 90-х годах интерес снова пропал. Расцвет начался в 2010-х. Доступность данных и GPU спровоцировала новый бум в сфере машинного обучения. Это позволило создавать более сложные модели, такие как глубокие нейронные сети, которые демонстрируют впечатляющие результаты в областях компьютерного зрения, обработки естественного языка, игр и других.
NS: А какие сейчас новейшие тенденции в мире нейросетей?
ЦЖ: Мы бы выделили четыре основных направления:
- Развитие глубокого обучения. Глобальный тренд, направленный на то, чтобы научить нейросети делать более точные прогнозы и ускорить анализ данных, таких как изображения или тексты, без потери в качестве.
- Обучение с меньшим количеством данных. Разработка способов, позволяющих нейронными сетям учиться на небольших объемах информации. Такой подход делает их более доступными для использования в разных областях, даже если данных мало.
- Совмещение нейросетей с другими технологиями. Комплекс мер, направленный на оптимизацию и ускорение уже существующих алгоритмов обучения, а также открытие новых.
- Обучение с подкреплением. Такой подход позволяет нейросетям взаимодействовать с окружающей средой и принимать решения на основе своего опыта.
Все это вместе поможет искусственному интеллекту еще на шаг приблизиться к уровню человеческого.
NS: Вы часто говорите про обучение нейронных сетей. Незнающему человеку трудно даже в абстракциях представить, как это выглядит. Получится у вас описать этот процесс на каком-то простом примере?
ЦЖ: Конечно! Давайте представим, что мы хотим научить компьютер различать картинки с кошками и собаками. Вот как происходило бы обучение нейронной сети на такой задаче.
- Подготовка данных. Сначала нам нужно сформировать набор данных, содержащий много изображений с кошками и собаками. Эти изображения будут использоваться для обучения нейронной сети. Каждое изображение должно быть правильно размечено как «кошка» или «собака».
- Разделение данных. Обычно данные разделяют на три набора: обучающий набор (для обучения модели), проверочный набор (для настройки параметров модели в процессе обучения) и тестовый набор (для оценки точности модели после обучения).
- Выбор архитектуры нейронной сети. Грубо говоря, для пробежки мы надеваем спортивные штаны, а на корпоратив костюм-тройку. Примерно так же и с нейросетями. В зависимости от задачи, эксперты решают, какой будет нейросеть на уровне архитектуры.
- Обучение модели. В процессе обучения нейронная сеть анализирует изображения из обучающего набора и корректирует свои параметры таким образом, чтобы минимизировать ошибку в определении кошек и собак.
- Оценка модели. После завершения обучения модели происходит оценка ее точности на проверочном наборе данных. Это позволяет понять, насколько хорошо модель обучилась и насколько она способна работать с новыми данными.
- Тестирование модели. Наконец, модель проверяется на тестовом наборе данных, который не использовался в процессе обучения или проверки. Это позволяет оценить реальную способность модели различать кошек и собак на новых, неизвестных ей изображениях.
- Настройка и повторное обучение (по необходимости). Если модель показывает недостаточную точность, ее можно настроить, изменяя параметры нейронной сети или увеличивая количество обучающих данных, а затем повторно обучить.
NS: А как в реальной жизни или работе нейросети помогают людям и облегчают их жизнь?
ЦЖ: Онлайн-сервисы и инструменты с интегрированными нейросетями появляются со скоростью несколько штук в неделю. Если говорить глобально, то вот несколько примеров.
- Медицина. Нейронные сети помогают в диагностике болезней, анализе медицинских изображений (например, рентгеновских снимков или снимков МРТ), предсказании осложнений и разработке индивидуализированных лечебных планов.
- Технологии связи. Голосовые ассистенты, системы распознавания речи, машинный перевод и синтез голоса.
- Финансы и бизнес. Нейронные сети помогают прогнозировать рыночные тенденции, обнаруживать мошенническую активность, автоматизировать процессы принятия решений и улучшать клиентский сервис.
- Автомобильная промышленность. В области автономных транспортных средств нейронные сети играют важную роль в системах распознавания дорожной обстановки, принятия решений и управления автомобилями.
- Рекомендательные системы. Нейронные сети используются для анализа поведения пользователей и предсказания их предпочтений, что помогает предлагать персонализированный контент и рекомендации в интернет-магазинах, социальных сетях и стриминговых сервисах.
Мы можем брать и более узкие сферы, но тогда одной статьи будет мало.
NS: Хорошо, давайте на конкретном примере. Наш редактор тоже захотел внедрить искусственный интеллект в свою работу. Ему надо выпустить статью с парой тематических картинок. Он не сильно продвинут в теме нейросетей, но попробовать очень хочет. Как ему реализовать задуманный план?
ЦЖ: Как раз для таких кейсов мы разработали своих собственных ботов, которые работают на базе настоящих ChatGPT и Midjourney. В первой нейросети редактор описывает человеческим языком тему статьи, а чат-бот ему все генерирует. Затем автор просит Midjourney создать тематические изображения и через пару минут весь материал для статьи готов. Нашими ботами пользуются не только новички. Для многих подписчиков ChatGPT стал правой рукой. Программисты генерируют код, копирайтеры — текст, дизайнеры — логотипы.
NS: А как вы сами видите будущее нейросетей и их роль в нашей жизни?
ЦЖ: Мы верим, что нейросети теперь с нами. Очень надолго. Мы видим рост интереса и инвестиций в это направление, что приводит к появлению новых технологий и приложений. Можно заявлять, что это не очередной хайп, так как нейронные сети активно внедряются в ключевые области экономики, а компании-гиганты тратят огромные деньги на разработку своих собственных нейронок. Но вместе с этим развитием возникают вопросы безопасности, этики и регулирования, которые также требуют внимания. В целом мы убеждены, что нейронные сети представляют огромный потенциал для улучшения нашей жизни и сделают ее более удобной, эффективной и интересной.