Проведено прямое измерение массы нейтрино с беспрецедентной точностью

Международный эксперимент KATRIN преодолел важный психологический барьер — определил новый верхний предел массы одной из самых неуловимых частиц, который наконец перешагнул отметку в один электронвольт. Этот шаг приближает долгожданный момент определения точной массы нейтрино, что может помочь космологам объяснить природу темной материи, а физикам элементарных частиц даст повод для пересмотра Стандартной модели.

Внутри большого электростатического спектрометра Тритиевого нейтринного эксперимента в Карлсруэ (KATRIN)

Внутри большого электростатического спектрометра Тритиевого нейтринного эксперимента в Карлсруэ (KATRIN) / ©Michael Zacher/KIT

Нейтрино — одни из самых неуловимых элементарных частиц во Вселенной. В космологии эти фундаментальные частицы играют важную роль в формировании крупномасштабных структур, таких как галактики. В то время как в физике элементарных частиц их крошечная, но ненулевая масса указывает на новые физические явления, выходящие за рамки существующих сегодня теорий. Без точного измерения масс нейтрино наше понимание Вселенной останется неполным.

Эту сложную задачу взял на себя международный эксперимент KATRIN (Karlsruhe Tritium Neutrino Experiment) на площадке KIT Campus North Технологического института Карлсруэ (Германия). Для определения массы слабо взаимодействующих с веществом нейтрино используют бета-распад трития. Тритий — нестабильный изотоп водорода с двумя дополнительными нейтронами в ядре и периодом полураспада более 12 лет.

При бета-распаде трития образуются электрон и электронное антинейтрино, массу которого и определяют в эксперименте KATRIN, измеряя энергетическое распределение электронов. Это требует значительных технологических усилий: в 70-метровом экспериментальном ангаре находится уникальная установка для работы с тритием (Windowless Gaseous Tritium Source), а также гигантский 200 тонный спектрометр для измерения энергии электронов распада с беспрецедентной точностью.

После начала научных измерений в 2019 году их точность постоянно повышалась. «KATRIN — эксперимент с высочайшими технологическими требованиями, и теперь он работает как часы», — с энтузиазмом говорит Гвидо Дрекслин (Guido Drexlin), руководитель проекта, сотрудник Технологического института Карлсруэ и один из двух представителей эксперимента.

Другой представитель — Кристиан Вайнхаймер (Christian Weinheimer) сотрудник Университета Мюнстера — добавляет: «Повышение мощности сигнала и снижение фонового шума были решающими этапами для достижения нового результата».

Взгляд со стороны на 200 тонный спектрометр эксперимента KATRIN / ©KATRIN collaboration/KIT
Взгляд со стороны на 200 тонный спектрометр эксперимента KATRIN / ©KATRIN collaboration/KIT

Углубленный анализ полученных данных требовал больших усилий от международной аналитической группы во главе с двумя ее координаторами — Сюзанной Мертенс (Susanne Mertens), сотрудником Института физики Макса Планка и Технического университета Мюнхена, и Магнусом Шлёссером (Magnus Schlösser) из Технологического института Карлсруэ. «Каждое влияние, каким бы малым оно ни было, должно быть изучено в деталях и устранено. Только с помощью этого трудоемкого подхода мы смогли исключить систематическую погрешность нашего результата из-за искажающих процессов», — поясняют координаторы по анализу данных.

Схематическое представление установки эксперимента KATRIN / ©Leonard Köllenberger/KATRIN collaboration
Схематическое представление установки эксперимента KATRIN / ©Leonard Köllenberger/KATRIN collaboration

В новом исследовании, опубликованном в журнале Nature Physics, экспериментальные данные первого года измерений объединили с результатами, полученными в 2021 году, в результате чего был определен новый верхний предел массы нейтрино, равный 0,8 электронвольта. Впервые в истории прямой эксперимент по измерению массы нейтрино вошел в космологически и физически важный диапазон масс — субэлектронвольт (то есть менее одного электронвольта), где, как предполагается, и находится фундаментальная шкала масс нейтрино.

«Сообщество физиков элементарных частиц взволновано тем, что KATRIN преодолел барьер в один электронвольт», — комментирует результаты работы эксперт по нейтрино Джон Вилкерсон (John Wilkerson), сотрудник Университета Северной Каролины, председатель исполнительного совета и соавтор исследования.

Измерения массы нейтрино продолжатся до конца 2024 года. В это время команда эксперимента KATRIN будет не только набирать статистику событий бета-распада, но и снижать уровень шума — например, за счет оптимизации конструкции и электромагнитного поля спектрометра.

В дальнейшей судьбе проекта особую роль сыграет новая детекторная система (TRISTAN), которая позволит KATRIN с 2025 года приступить к поиску пока только теоретических «стерильных» (или инертных) нейтрино с массами в килоэлектронвольт-диапазоне — кандидатов на загадочную темную материю. В отличие от обычных, активных нейтрино, участвующих в слабом и гравитационном взаимодействиях, стерильные взаимодействуют с материей лишь гравитационно, прямо как та самая темная материя.


Источник