Физики обновили точность измерения магнитного момента мюона

Ученые из коллаборации Muon g-2 повысили точность измерения магнитного момента мюона до седьмого знака после запятой. Расхождение теоретических расчетов и экспериментальных результатов поможет уточнить или изменить Стандартную модель.

Ученые внутри кольца хранения частиц эксперимента Muon g-2 / © Brookhaven National Laboratory

Ученые внутри кольца хранения частиц эксперимента Muon g-2 / © Brookhaven National Laboratory

Изучение магнитных моментов фундаментальных частиц — важная задача для ученых. Магнитный момент электрона известен с точностью до 11 знаков после запятой. Экспериментальный результат предсказали в рамках квантовой электродинамики (КЭД), и измеренное значение совпало с теоретическим с точностью до 10 знаков. 

Мюоны похожи на электроны — тот же заряд и спин, но масса в 207 раз больше. Теоретические расчеты величины магнитного момента мюона должны, помимо КЭД, учитывать эффекты электрослабого взаимодействия и вклады адронов. Из-за этого мюоны в 43 тысячи раз чувствительнее к влиянию потенциальных неизвестных частиц за пределами Стандартной модели. 

Повышение точности измерений характеристик мюонов открывает возможность уточнения и пересмотра Стандартной модели, развития теорий струн и суперсимметрии. Отклонения реального магнитного момента от предсказанного называют аномальным магнитным моментом.

Ограничения в предсказаниях теории связаны с адронной частью расчетов. Вклад адронов в расчеты включает в себя флуктуации вакуума, связанные с сильно взаимодействующими частицами, такими как протоны, нейтроны и мезоны. Хотя результаты вычислений по КЭД и электрослабой теории считают достаточно точными, теоретические расчеты в отношении вклада адронов эту точность снижают. Поэтому точность предсказаний для аномального магнитного момента мюона ограничена. 

Физики из коллаборации Muon g-2 в Фермилабе (США) после долгого эксперимента рассчитали  магнитный момент мюона до седьмого знака после запятой. Исследователи разогнали мюоны почти до скорости света в кольце хранения частиц. К движущимся мюонам приложили магнитное поле, в 30 тысяч раз превышающее силу магнитного поля Земли. Под действием этого поля мюоны начали менять положение оси вращения, то есть прецессировать вокруг оси спина из-за своего магнитного момента. 

Пока мюоны двигались по кольцу хранения, их магнитный момент взаимодействовал с внешним магнитным полем и испытывал влияние виртуальных частиц в вакууме. Из сравнения частоты прецессии мюонов с частотой их движения по кольцу исследователи смогли вывести аномальный магнитный момент мюона. Точность измерения составила 0,2 миллионных, семь знаков после запятой. 

Измерять магнитный момент мюона стали в 2006 году в Брукхейвенской национальной лаборатории в Нью-Йорке. В описываемом эксперименте точность измерения улучшили в 2,2 раза по сравнению с предыдущими данными. Результаты исследования 2024 года опубликованы в журнале Physical Review D. 

Сбор данных эксперимента продолжался три года, с марта по июль 2019-го и с ноября 2019-го по март 2020-го. Исследователи тщательно очистили и скорректировали экспериментальные данные, учитывая различные систематические факторы, которые могли бы исказить результат: динамику поведения мюонов внутри кольца, потерю мюонов на апертуре, расхождение из-за ненулевого электрического поля. Завершить обработку данных планируют к концу 2025 года. Над экспериментом работают 181 исследователь из семи стран и 33 научных организаций. 

Несмотря на значительное улучшение точности, пока нельзя сравнивать результаты с теорией из-за расхождений в данных, связанных с адронными эффектами. Анализ оставшихся данных может еще больше улучшить статистическую точность измерений, что позволит приблизиться к пониманию физических процессов за пределами Стандартной модели. Исследователи ожидают добавления двух порядков к точности. 


Источник