Энергия от окон: ученые изобрели почти прозрачные солнечные батареи

Ими можно заменить экраны устройств, стекла теплиц, а также окна небоскребов, домов и автомобилей.

Небоскребы в Шанхае

Небоскребы в Шанхае / ©Ermell, Wikimedia Commons

Исследовательская группа из японского Университета Тохоку разработала солнечные панели с видимой прозрачностью до 79 процентов на основе монослойных полупроводников из металла и халькогена. «Прозрачные солнечные панели представляют большой интерес, потому что они не так ограничены в применении, как традиционные непрозрачные солнечные панели», — пишут ученые в статье, опубликованной в Nature Scientific Reports.

Несмотря на недавний прорыв в исследовании полупроводников из перовскита и органических соединений, добиться видимой прозрачности выше 70% никак не удавалось. Японские исследователи выбрали для усовершенствования солнечные элементы на барьере Шоттки — потенциальном барьере, который появляется в приконтактном слое полупроводника, граничащего с металлом. В качестве основных материалов взяли оксид индия-олова — самый часто используемый из прозрачных проводящих оксидов — и монослой дисульфида вольфрама.

Дисульфид вольфрама входит в семейство дихалькогенидов переходных металлов (transition metal dichalcogenide, TMD) — тонких проводников, состоящих из переходного металла и халькогена. И они действительно тонкие — всего три слоя атомов, слой металла располагается между слоями халькогена. Ученые считают дихалькогениды переходных металлов одними из самых перспективных материалов для создания почти прозрачных солнечных панелей. Во-первых, потому что эти материалы работают в диапазоне видимого света. Во-вторых, потому что они почти прозрачны для нас.

Разработанный японскими учеными солнечный элемент / ©Xing He et al.
Разработанный японскими учеными солнечный элемент / ©Xing He et al.

Японские исследователи попробовали усовершенствовать контактный слой между составляющими. В результате с помощью дополнительного тонкого слоя оксида вольфрама им удалось добиться в тысячу раз более высокой эффективности преобразования электроэнергии, чем у элементов с обычными электродами из оксида индия-олова. И тут возникла проблема с масштабированием технологии и ее практическим применением.

Простое увеличение количества и площади составляющих зачастую приводит к снижению мощности. Но ученым удалось найти «архитектурный дизайн, подходящий для масштабного производства таких элементов».

В результате они добились мощности в 420 пиковатт от солнечной панельки площадью в один квадратный сантиметр с прозрачностью 79 процентов. Это самый высокий показатель для столь тонкого элемента на основе дихалькогенидов переходных металлов.

Прозрачные солнечные панели преобразуют нашу привычную жизнь. От небольших устройств до полностью стеклянных офисных зданий — нас окружают миллиарды квадратных метров стеклянных поверхностей. Впрочем, такая технология сперва должна оказаться относительно недорогой и легкой в производстве.


Источник