Ученые предложили превращать природный газ в водород прямо в месторождениях

Ученые разработали подход, позволяющий с эффективностью до 45% получать водород из природного газа прямо в газовых месторождениях. Для этого в скважину нужно подать водяной пар, катализатор и кислород, который воспламенит природный газ. Благодаря катализатору в процессе горения образуется смесь угарного газа и водорода, из которой последний можно легко извлечь. Такая технология поможет ускорить переход от ископаемого топлива к экологически чистой водородной энергетике. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Fuel.

Команда наблюдает за экспериментом в защитном периметре. Источник: Елена Мухина

Команда наблюдает за экспериментом в защитном периметре. Источник: Елена Мухина

Около 80% энергии люди получают благодаря сжиганию ископаемого топлива — нефти и природного газа. Прямое использование этих энергетических ресурсов неэкологично, поскольку сопровождается выделением углекислого газа, способствующего потеплению климата. Хотя газ считается «чище» нефти потому, что его использование не приводит к выделению большого количества других дополнительных вредных примесей, из-за образования углекислого газа этот тип топлива вреден для окружающей среды сам по себе. Альтернативой может стать применение водорода в качестве топлива, поскольку в процессе его сгорания выделяется только водяной пар. Однако до сих пор этот «зеленый» источник энергии массово не используется из-за сложностей с его производством.

Ученые из Сколковского института науки и технологий (Москва) впервые предложили добывать водород из пластов в месторождениях природного газа. Такие пласты богаты углеводородами, содержащими большое количество водорода в составе молекулы, а значит, преобразуя эти вещества, можно получить большие объемы «зеленого» топлива.

Авторы разработали эффективный способ получения водорода из газовых месторождений. Предложенный подход включает несколько стадий. Сначала в скважину закачиваются водяной пар и катализатор, который в дальнейшем поможет извлечь водород из компонентов природного газа. Затем туда подают воздух или чистый кислород, благодаря чему газ воспламеняется прямо внутри пласта. В присутствии водяного пара и катализатора природный газ горит, превращаясь в смесь угарного газа и водорода. Хотя из угарного газа впоследствии и образуется углекислый газ, он остается в пласте и не выходит на поверхность, а потому не попадает в атмосферу и не усиливает парниковый эффект. На последнем этапе водород извлекают из скважины через мембрану, не пропускающую другие продукты реакции. В результате все образующиеся газы, кроме водорода, — угарный и углекислый — остаются навсегда «законсервированными» под землей.

Авторы протестировали такую технологию в реакторах, позволяющих создать условия, идентичные реальному газовому пласту. Для этого исследователи загрузили в установку измельченные горные породы, с помощью насосов подали в нее метан — основной компонент природного газа, водяной пар и катализатор, а затем кислород. При этом в реакторе поддерживали характерное для газовых пластов давление (в восемьдесят раз превышающее атмосферное).

По мере эксперимента ученые анализировали газовый состав в реакторе, чтобы оценить эффективность превращения метана в водород. Оказалось, что максимальное количество водорода — 45% от общего объема газов — образуется при температуре 800°C и больших объемах подаваемого в реактор водяного пара. Количество этого компонента реакции для максимальной производительности должно в четыре раза превышать объем природного газа. При этом установленная авторами температура — 800°C — легко достигается в процессе горения природного газа, поэтому искусственно ее даже не придется поддерживать.

Разные реакторы для экспериментов. Источник: Елена Мухина

Разные реакторы для экспериментов. Источник: Елена Мухина

Состав породы также влиял на выход водорода. Так, в экспериментах с искусственной пористой средой из оксида алюминия выход водорода достигал 55%. Более высокая эффективность в этом случае объясняется тем, что оксид алюминия инертен, то есть он не реагирует ни с какими окружающими его веществами. В естественных породах присутствуют другие, более активные минералы, которые могут вступать в побочные реакции с компонентами газовой смеси и влиять на выход водорода.

«Все стадии предлагаемого процесса основаны на хорошо зарекомендовавших себя технологиях, которые ранее не были адаптированы к добыче водорода из реального газового пласта. Мы продемонстрировали, что предлагаемый подход позволит превращать углеводороды в «зеленое» топливо в полевых условиях с эффективностью до 45%. В дальнейшем мы планируем протестировать нашу методику на практике — на примере газовых месторождений», — рассказывает руководитель проекта, поддержанного грантом РНФ, Елена Мухина, PhD, старший научный сотрудник Центра науки и технологий добычи углеводородов Сколковского института науки и технологий.

 

Информация и фото предоставлены пресс-службой Российского научного фонда


Источник