Отходы целлюлозно-бумажного производства помогут извлекать благородные металлы

Лигносульфонат, который исследователи УрФУ использовали для опытов. Фото: пресс-служба УрФУ / Родион Нарудинов

Лигносульфонат, который исследователи УрФУ использовали для опытов. Фото: пресс-служба УрФУ / Родион Нарудинов

Специалисты Уральского федерального университета предложили использовать отходы целлюлозно-бумажного производства (лигносульфонаты) в процессе переработки руд. Добавление лигносульфоната поможет, с одной стороны, извлекать тяжелые и благородные металлы (золото, серебро, медь и другие) из упорных рудных концентратов, а с другой — утилизировать накопленные на производствах отходы целлюлозно-бумажной промышленности. Процесс получения наноструктур лигносульфоната и результаты опытов с его использованием исследователи описали в Journal of Molecular Liquids. Работу поддержал Российский научный фонд (проект № 22-79-10290).

«Лигносульфонаты — это технические производные лигнина. Лигнин наряду с целлюлозой и гемицеллюлозой являются тремя основными типами природных полимеров, являющихся структурными элементами сосудистых растений — трав, лиственных и хвойных деревьев, кустарников. Если целлюлоза находит широкое применение, в частности, в производстве бумаги, то лигнин в силу нерегулярного строения и переменного состава пока еще мало используется. Поэтому на сегодня в мире около 95% промышленного лигнина сжигается и только 5% находит применение в качестве поверхностно-активных веществ, связующих для брикетирования, диспергаторов цемента и пигментов. Но природное происхождение, склонность к формированию наноструктур и ансамблей, отсутствие токсичности, дешевизна делают этот продукт весьма перспективным для целого ряда приложений», — рассказывает соавтор разработки, старший научный сотрудник лаборатории перспективных технологий комплексной переработки минерального и техногенного сырья цветных и черных металлов УрФУ Татьяна Луговицкая.  

Исследователи УрФУ изучили процесс самосборки лигносульфонатов и предложили относительно простой способ получения наноструктур на его основе. В процессе работы выяснилось, что полимер ассоциативный — самопроизвольно может формировать целые ансамбли — от наноструктур до микрочастиц, причем частицы разной морфологии — стержни, плотные наночастицы сферической формы, везикулы (полые частицы). Эти структуры можно использовать не только в таких приложениях, как доставка лекарств, биомедицинская визуализация и диагностика, но и в ряде технических приложений, в частности, в гидрометаллургических процессах для перевода в раствор минералов, сопровождающихся образованием серы.

«Мы получили частицы разной морфологии и исследовали их инкапсулирующую способность по отношению к сере. Результаты исследований на модельных экспериментах и в лабораторном масштабе показали высокую эффективность таких структур для предотвращения пассивирующего действия серы в процессе выщелачивания упорных руд. Для металлургического процесса это чрезвычайно важно», — поясняет Татьяна Луговицкая.

В процессе гидрометаллургической переработки руду с содержанием цветных металлов растворяют в кислых средах, при высоких температурах и нередко под давлением. В таких условиях металлы переходят в раствор и образуются плавы серы, которая покрывает поверхность рудных минералов и процесс останавливается, поясняют исследователи. И нужно что-то, что будет препятствовать смачиванию серой частиц минералов. У металлургов УрФУ получилось предотвратить этот процесс с помощью добавки наноструктур лигносульфонатов.

В мире ведутся работы по получению наночастиц лигносульфонатов (Китай, Европа, США). Но методы получения таких структур и сферы применения иные: частицы пытаются использовать преимущественно в биомедицинских приложениях (к примеру, для доставки лекарств), в качестве активатора роста растений. Для России целенаправленное получение наноструктур лигносульфонатов — новое направление, поясняют исследователи. И если лигносульфонаты в настоящее время используются в качестве добавок для строительных материалов, то применение наноструктур, как и их получение, еще только разрабатывается.

 

Справка

В настоящее время запасы богатых руд истощены, из-за чего в мире остро стоит проблема переработки упорных руд, содержащих редкие, тяжелые, благородные металлы. Поэтому ученые и специалисты промышленных компаний работают над созданием новых технологий и методов для извлечения металлов и переработки таких руд.

 

Информация и фото предоставлены Отделом научных коммуникаций УрФУ


Источник