Черные дыры унаследовали магнитные поля от родительских звезд

Способность окрестностей черных дыр испускать джеты (узкие струи плазмы, движущиеся с околосветовой скоростью) часто связана с самыми яркими взрывами в космосе — гамма-всплесками. До недавнего времени ученые не могли точно объяснить, как черные дыры получают необходимые для формирования джетов магнитные поля.

Черные дыры унаследовали магнитные поля от родительских звезд

Быстро вращающийся аккреционный диск черной дыры и образующийся в результате джет, питаемый энергией космического монстра / © Ore Gottlieb et al (2024)

В 1977 году астрофизики Роджер Блэндфорд и Роман Знаек представили механизм извлечения энергии (формирующей мощные джеты из плазмы аккреционного диска вокруг космического «монстра») из вращающейся черной дыры, окруженной сильным магнитным полем. Процесс Блэндфорда — Знаека, однако, создавал парадокс: перед коллапсом сильные магнитные поля в ядре звезды должны замедлять ее вращение из-за переноса углового момента, но звезда, обладающая сильным магнитным полем, вращаться быстро не может. 

Инновационное решение проблемы описала исследовательская группа под руководством Оре Готтлиба (Ore Gottlieb) из Колумбийского университета (США). В работе, опубликованной в журнале The Astrophysical Journal Letters, команда предположила, что черная дыра наследует сильное магнитное поле не от родительской звезды, а во время начальной стадии эволюции нейтронной звезды (proto-neutron star (PNS)), которая формируется сразу после коллапса ядра массивной звезды и в итоге может превратиться в черную дыру.

К такому выводу ученые пришли, применив эволюционные модели звезд MESA и релятивистской магнито-гидродинамической симуляции для создания компьютерной модели. Результаты показали, что при коллапсе массивного светила сначала образуется быстровращающаяся нейтронная звезда, которая генерирует сильные магнитные поля. Затем из-за избытка углового момента вокруг нее формируется аккреционный диск: он удерживает магнитные поля, помогая нейтронной звезде набрать достаточную массу для последующего коллапса в черную дыру. 

Благодаря аккреционному диску магнитное поле такой нейтронной звезды прикрепляется к горизонту событий черной дыры, позволяя ей испускать джеты, соответствующие наблюдаемым характеристикам гамма-всплесков.

«Очень интересно наконец-то понять это фундаментальное свойство черных дыр и то, как они питают гамма-всплески — самые энергетически насыщенные события во Вселенной», — заключили авторы научной работы.   

Отметим, что в предыдущих исследованиях рассматривались изолированные нейтронные звезды и изолированные черные дыры, в которых во время коллапса теряется магнетизм. Теперь же Готтлиб и его команда обнаружили, что нейтронные звезды на первом этапе своей эволюции обладают собственными аккреционными дисками. Именно их наличие позволило предположить процесс наследования сильных магнитных полей черными дырами.

Расчеты также подтвердили, что в большинстве случаев образование аккреционного диска вокруг черной дыры происходит быстрее, чем потеря магнитного поля нейтронной звездой. Открытие подтверждает идею о том, что черные дыры могут сохранять магнитное поле родительской нейтронной звезды. 

Предложенная учеными модель открывает новые направления для исследований, включая поиск признаков взаимодействия джетов с окружающей средой, создание моделей, объясняющих различные типы гамма-всплесков и связанных с ними сверхновых, а также способствует лучшему пониманию механизмов, ответственных за генерацию сильных магнитных полей нейтронных звезд. 


Источник